skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Xiaoyue Cathy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Maintaining airport runways is crucial for safety and efficiency, yet traditional monitoring relies on manual inspections, prone to time consumption and inaccuracy. This study pioneers the utilization of low‐cost dashcam imagery for the detection and geolocation of airport runway pavement distresses, employing novel deep‐learning frameworks. A significant contribution of our work is the creation of the first public dataset specifically designed for this purpose, addressing a critical gap in the field. This dataset, enriched with diverse distress types under various environmental conditions, enables the development of an automated, cost‐effective method that substantially enhances airport maintenance operations. Leveraging low‐cost dashcam technology in this unique scenario, our approach demonstrates remarkable potential in improving the efficiency and safety of airport runway inspections, offering a scalable solution for infrastructure management. Our findings underscore the benefits of integrating advanced imaging and artificial intelligence technologies, paving the way for advancements in airport maintenance practices. 
    more » « less